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[1] We describe a subspace Monte Carlo (SSMC) technique that reduces the burden of
calibration-constrained Monte Carlo when undertaken with highly parameterized
models. When Monte Carlo methods are used to evaluate the uncertainty in model outputs,
ensuring that parameter realizations reproduce the calibration data requires many
model runs to condition each realization. In the new SSMC approach, the model is first
calibrated using a subspace regularization method, ideally the hybrid Tikhonov-TSVD
‘‘superparameter’’ approach described by Tonkin and Doherty (2005). Sensitivities
calculated with the calibrated model are used to define the calibration null-space, which is
spanned by parameter combinations that have no effect on simulated equivalents to
available observations. Next, a stochastic parameter generator is used to produce
parameter realizations, and for each a difference is formed between the stochastic
parameters and the calibrated parameters. This difference is projected onto the calibration
null-space and added to the calibrated parameters. If the model is no longer calibrated,
parameter combinations that span the calibration solution space are reestimated while
retaining the null-space projected parameter differences as additive values. The
recalibration can often be undertaken using existing sensitivities, so that conditioning
requires only a small number of model runs. Using synthetic and real-world model
applications we demonstrate that the SSMC approach is general (it is not limited to any
particular model or any particular parameterization scheme) and that it can rapidly produce
a large number of conditioned parameter sets.
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1. Introduction

[2] If a model accurately represents processes relevant to
the simulated system, errors in simulated predictions depend
on parameter detail that is not represented in the model, and/
or is not accurately inferred through calibration. In recog-
nition of this, research has been undertaken to develop
approaches for evaluating the potential error associated with
model outputs. Tonkin et al. [2007] describe two broad
methodological approaches as predictive error variance
analysis (PEVA), and predictive uncertainty analysis
(PUA). Some benefits and shortfalls of each approach are
now briefly summarized.
[3] Linear and nonlinear PEVA evaluate the potential

error in predictions made by a calibrated model using
methods based upon variance propagation [e.g., Bard,
1974; Seber and Wild, 1989]. Since PEVA evaluates the
error in predictions made by a calibrated model, some form
of regularization is used to obtain a unique solution to the
inverse problem. This is usually a form of parameter
parsimony. Therefore, PEVA is usually undertaken using a

small number of parameters. Nonlinear PEVA is formulated
as a constrained optimization problem in which a single
prediction is maximized or minimized subject to the con-
straints of maintaining the model in a calibrated state at a
certain level of confidence [Vecchia and Cooley, 1987].
Tonkin et al. [2007] present a method for undertaking
nonlinear PEVA, based on the method described by Vecchia
and Cooley [1987] but extended to highly parameterized
models in which mathematical regularized inversion meth-
ods are used to estimate parameters. In that approach, there
is (notionally) no limit to the number of parameters that can
be included in the analysis.
[4] Nonlinear PEVA possesses efficiencies that stem from

its basis in Gauss-Newton techniques [e.g., Cooley and
Naff, 1990], and can be effective when calculating confi-
dence intervals for a single prediction. However, nonlinear
PEVA must be undertaken independently to investigate
different model predictions, so that efficiencies achieved
from the analysis of a single prediction are eliminated by the
necessity of undertaking as many constrained minimizations/
maximizations as there are predictions.
[5] PUA is a more intrinsic concept that explicitly

acknowledges that many parameter sets enable the model
to reproduce available observations within confidence limits
determined by the error associated with measurements of
system state and the innate variability of system properties.
In principle, no single calibrated model is identified. In-
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stead, a suite of parameter realizations is generated. PUA
techniques include calibration-constrained Monte Carlo,
Markov Chain Monte Carlo (MCMC), and other methods
that propagate prior stochastic parameter descriptions
through a model [e.g., Kitanidis, 1996; Yeh et al., 1996;
Oliver et al., 1997; Kuczera and Parent, 1998; Woodbury
and Ulrych, 2000]; the method of stochastic equations
[Rubin and Dagan, 1987; Guadagnini and Neuman, 1999;
Hernandez et al., 2006]; Generalized Likelihood Uncertain-
ty Estimation (GLUE) [Beven and Binley, 1992]; and
deformation techniques [e.g., Lavenue and de Marsily,
2001; Gómez-Hernandez et al., 1997, 2003].
[6] MC-based PUA is appealing since it does not typically

rest upon assumptions of model (quasi-) linearity; and, once
a suite of parameter realizations has been obtained, this
ensemble can be used to evaluate the uncertainty associated
with any model output. However, the application of MC-
based PUA can be complex and computationally intensive
when honoring calibration constraints on parameters. In
particular, calibration-constrained MC-based PUA can be
onerous when forward model run times are long and/or when
a large number of parameters are included in the analysis.
[7] In one comparative analysis, Gallagher and Doherty

[2007] determined that while nonlinear, calibration-
constrained PEVA was more efficient than MCMC PUA
when examining the range of uncertainty associated with a
single model prediction, this relative efficiency diminished
when the uncertainty of many predictions was evaluated,
and/or where there was a need to examine the statistical
relationships between multiple model predictions. This
suggests that the desirable benefits of MC-based PUA to
evaluate multiple predictions and their statistical relation-
ships could be capitalized upon if the computational effi-
ciency could be improved upon.
[8] In this paper we describe a new subspace Monte

Carlo (SSMC) technique that enables efficient evaluation
of the range of error associated with outputs from highly
parameterized models. The SSMC technique is founded in
error variance analysis theory: however, it incorporates
several developments that render it akin to deformational
MC techniques. In the new SSMC technique, the model is
calibrated using a subspace regularization technique such as
Truncated Singular Value Decomposition (TSVD) or the
hybrid Tikhonov-TSVD superparameter approach. Using
sensitivities calculated with the calibrated model, the cali-
bration null-space is defined, which is spanned by parameter
combinations that (if the model were linear) have negligible
effect on simulated equivalents to available observations
[Tonkin and Doherty, 2005]. Next, a stochastic parameter
generator is used to produce multiple realizations of the
model parameters. For each realization, a difference is
formed between the stochastic parameters and the calibrated
parameters. This difference is then projected onto the
calibration null-space, added to the calibrated parameters,
and the model executed.
[9] If the model is no longer calibrated, parameter com-

binations that comprise the calibration solution space, which
is orthogonal to the calibration null-space, are reestimated
with the null-space-projected parameter differences retained
as additive values. This recalibration can often be under-
taken using superparameters constructed on the basis of
existing sensitivities, so that conditioning may require only

a small number of model runs. It is also demonstrated that
the SSMC technique enables the inclusion of fine (e.g.,
model grid) scale parameterization even when the calibra-
tion is undertaken using parameterization devices such as
zones or pilot points.
[10] This paper is structured as follows. First, the theory of

regularized inversion using subspace techniques is presented.
Equations are presented that describe (1) how calibration
can be formulated as subspace-based regularized inversion,
(2) how postcalibration parameter error variance is calcu-
lated, (3) the projection of stochastic parameter values onto
the calibration null-space, and finally, (4) Broyden’s rank-
one update [Broyden, 1965] and how this can benefit the
SSMC technique. Following this, the SSMC analysis pro-
cedure is described fully, together with an introduction to
methods for incorporating fine (e.g., model grid scale) detail
that was not included in the calibration but that honors
spatiotemporal parameter statistics. Assumptions that un-
derlie the SSMC technique, and their possible repercus-
sions, are then discussed. The SSMC technique is then
demonstrated by application to a synthetic groundwater
model, and to a real-world watershed model. These appli-
cations demonstrate that the SSMC approach is general (that
is, it is not limited to any particular model or to any
particular parameterization device) and that it can rapidly
produce a large number of conditioned parameter sets for
use in assessing the uncertainty in a variety of model
outputs. Results of these analyses are discussed together
with concluding remarks.
[11] To our knowledge this is the first presentation of a

general method for efficiently evaluating the range of
model outputs for any model employing any parameteriza-
tion technique. Fundamental to the method is the use of a
large number of parameters, and the use of subspace
techniques. Use of a large number of parameters may allow
property detail to be represented in a model at a scale
approaching true variability of these properties (or at least a
scale that approaches that to which predictions of interest
are sensitive); at the same time, the use of subspace
techniques allows the analysis to be undertaken efficiently
as an adjunct to calibration undertaken using regularized
inversion.

2. Theory

2.1. Parameter Estimation

[12] For linear models, the relationship between the n
model parameters, p, and the m model outputs, y, for which
there are corresponding measurements can be represented in
matrix form as:

y ¼ Xp ð1Þ

where the m-row by n-column (m x n) matrix X contains the
sensitivity of the simulated equivalent of each measurement
with respect to each parameter. Equation (1) describes the
forward action of the model. If the model is a perfect
simulator of reality, differences between measurement data
and their simulated equivalents are solely a function of the
error associated with each measurement, i.e.,

y ¼ Xpþ e ð2Þ
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where e characterizes measurement error. Aweighted sum-of-
squared residuals objective function,F, can be defined that is a
measure of the fit between simulated values and the measured
data that are being fit through the calibration process:

F ¼ y� Xp
� �t

Q y� Xp
� �

ð3Þ

where the vector p lists current parameter values, the
superscript t indicates the matrix transpose, and the m x m
weight matrix Q is ideally proportional to the inverse of the
covariance matrix of measurement errors [Bard, 1974].
Other objective functions exist; however the L2 norm has
desirable qualities including the ability to assess parameter
and predictive error [Bard, 1974].
[13] For a linear model, the parameter values that mini-

mize F are obtained from:

p ¼ XtQXð Þ�1
XtQy ð4Þ

where the superscript �1 indicates the matrix inverse. For
nonlinear models p cannot be calculated directly from y
using (4). Instead, a parameter upgrade or change vector,
Dp, is calculated from the residual vector, r as:

Dp ¼ XtQXð Þ�1
XtQr ð5Þ

Equations (1)–(5) underpin the Gauss-Newton method of
nonlinear parameter estimation [Bard, 1974]. Its use is
predicated on the assumption that an inverse of the n x n
matrix XtQX exists, and hence that the inverse problem
includes a small enough number of parameters to be
uniquely estimable. Regression performance is commonly
improved by supplementing equation (5) with devices such
as the (Levenberg-) Marquardt parameter [Seber and Wild,
1989].

2.2. Mathematical Regularization

[14] Where there are more parameters than can be esti-
mated uniquely, XtQX is not directly invertible, and many
different parameter sets may lead to an equally low objec-
tive function. The goal of calibration is then to obtain a
solution to the inverse problem for which the parameters
possess the most desirable properties. Suppose that this set
of parameters is calculated from observations using matrix
G, such that:

p ¼ Gy ð6Þ

A variety of methods have been developed to obtain a
suitable G. Tonkin and Doherty [2005] contrast methods
based on Tikhonov regularization [Tikhonov and Arsenin,
1977] with those that employ TSVD [e.g., Aster et al.,
2005]. In these cases the determination of G for use in
equation (6) requires that XtQX of equation (5) be replaced,
respectively, by the following:

XtQX ffi XtQXþ b2TtST
� �

ð7Þ

XtQX ffi V1E1V
t
1

� �
ð8Þ

where: T is a matrix of Tikhonov regularization constraints;
S is the regularization weight matrix; b2 is the regularization
weight factor; and V1 and E1 are obtained through singular
value decomposition of XtQX such that:

XtQX ¼ V1V2½ �
E1 0

0 E2

2
4

3
5 V1V2½ �t ¼ V1E1V

t
1 þ V2E2V

t
2 ð9Þ

where: ns is the number of pretruncation eigenvalues; E1 is
a diagonal matrix listing the ns pretruncation eigenvalues;
E2 is a diagonal matrix listing the n � ns posttruncation
eigenvalues; V1 contains the ns orthogonal unit eigenvec-
tors corresponding to E1; and, V2 contains the n � ns
orthogonal unit eigenvectors corresponding to E2.
[15] Tonkin and Doherty [2005] also describe a hybrid

Tikhonov-TSVD inversion technique developed to combine
the benefits of each of these methods. That technique is
based upon constructing a ‘‘base’’ parameterization com-
prising a large number of parameters, calculating base
parameter sensitivities, and using TSVD to decompose the
base parameter matrix XtQX according to equation (9). This
decomposition is used to construct superparameters, where
superparameters are factors by which principal eigenvectors
of the base parameter matrix XtQX, i.e., the ns eigenvectors
V1, are scaled to minimize a least squares objective func-
tion. Linear combinations of base parameters that corre-
spond with singular values falling below the TSVD
truncation threshold, i.e., the n � ns eigenvectors V2, are
not estimated. Because the number of superparameters may
be far less than the number of base parameters, the compu-
tational burden for solution of the reformulated inverse
problem is greatly reduced.
[16] To implement Tikhonov regularization in the hybrid

technique, Tikhonov equations are developed for the base
parameters and encapsulated in matrix T, as described
above. For the Tikhonov equations to be augmented in
the solution to the reformulated problem, matrix T must first
be postmultiplied by V1 and equation (5) can be reformu-
lated as follows:

D ¼ TV1 ð10aÞ

XtQX ffi V1 ZtQZþ b2DtSD
� �

ð10bÞ

where V1 is obtained through TSVD of XtQX as described
above, and the m x ns matrix Z contains the calculated
sensitivities of model outputs with respect to superpara-
meters [see Tonkin and Doherty, 2005, equation 12]. Since
the appropriate value of b2 is unknown at the outset,
equation (10) is formulated as a constrained minimization,
in which the reciprocal of b2 performs a role to similar to
that of the Lagrange multiplier [Haber, 1997; Tonkin and
Doherty, 2005].
[17] As noted by Tonkin et al. [2007], the division of

parameter space into solution and null-spaces is approxi-
mate, since parameter values (and, more importantly, sen-
sitivities upon which the TSVD is based) change throughout
the calibration. However, as described later, the recalibra-
tion step of the SSMC technique produces numerous
parameter combinations that are calibrated to a level com-
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patible with measurement noise, even if the relationship
between solution and null-spaces is compromised by
nonlinearity.
[18] For pure TSVD and the hybrid Tiknonov-TSVD

technique respectively, G is described by:

G ¼ V1E1V
t
1

� �
XtQ ð11Þ

G ¼ V1 ZtQZþ b2DtSD
� ��1

ZtQ ð12Þ

Postmultiplication of G by X gives the n x n model
resolution matrix, R [e.g., Menke, 1989]. Combining
equations (2) and (6) gives the following relationship:

p ¼ GXpþGe ð13Þ

which since R = GX is equivalent to:

p ¼ RpþGe ð14Þ

The resolution matrix illustrates that the estimated value of a
single parameter is in fact a weighted average of many true
parameters. For overdetermined parameter estimation, each
resolving kernel (i.e., each row of R) contains a single
nonzero element, of value 1, so that R is equal to the
identity matrix, I. However, in the underdetermined
contexts described in this study, the resolving kernel
comprising each row of R possesses a spread of nonzero
elements that expresses the averaging relationship through
which an element of p is related to the elements of p
[Menke, 1989].

2.3. Parameter Error

[19] Equation (14) expresses, in a linear sense, how well
parameters p can be resolved by the estimated parameters,
p. From equation (14), parameter error, p � p, is given by:

p� p ¼ I� Rð Þp�Ge ð15Þ

Since p is unknown, equation (15) cannot be used directly.
However, the statistical properties of parameter error can be
evaluated on the basis of knowledge of the statistical
properties of real-world hydraulic properties, expressed by
the covariance matrix C(p), together with the statistical
properties of measurement noise, expressed by the covari-
ance matrix C(e). The covariance matrix of parameter error,
C(p–p), can then be derived from equation (15) as:

C p� p
� �

¼ I� Rð ÞC pð Þ I� Rð Þt þ GC eð ÞGt ð16Þ

Detailed discussion of equation (16) is given by Moore and
Doherty [2005]. Recalling the derivation of the terms of
equations (14) and (15), it is clear that equation (16)
expresses contributions to parameter error arising from
(1) the inability to estimate parameter combinations that
are insensitive and therefore fall below the TSVD truncation
limit and (2) contamination by measurement noise, e, of the
estimates of parameter combinations that lie above the
TSVD truncation limit. That is, the first term of equation
(16) expresses the contribution to parameter error from the

calibration null-space, spanned by the columns of V2 of
equation (9); while the second term of equation (16)
expresses the contribution to parameter error due to errors
in the estimates of parameter combinations occupying the
calibration solution space, spanned by the columns of V1

of equation (9), stemming from measurement noise. In the
absence of Tikhonov regularization, the division between
calibration solution and null-spaces is exact, so that the
two terms on the right side of (16) are orthogonal; in the
presence of Tikhonov regularization, this division is
approximate.
[20] Tonkin et al. [2007] demonstrate how equation (16)

can be used to develop a calibration-constrained PEVA
method for use in underdetermined problems. Although
this approach can be efficient, it can only investigate the
error variance associated with one prediction at a time. If the
intent is to evaluate the uncertainty associated with numer-
ous predictions, an efficient Monte Carlo approach that
produces an ensemble of calibration-constrained parameter
sets would be more suitable for analysis of calibration-
constrained variability. The new SSMC approach is now
described.

2.4. Calibration-Constrained Subspace Monte Carlo

[21] If C(p) of equation (16) is constructed to characterize
hydrologic properties and their spatiotemporal variation,
random realizations of parameter values can be generated
from this matrix. However, when the model is executed
with these realizations, it is generally the case that very few
parameter sets result in an acceptable value for F since
parameters generated directly from C(p) are unconstrained
by measurements of system state, such as groundwater
elevations.
[22] As described above, the first term of equation (16)

arises because parameter combinations that lie within the
calibration null-space are inaccessible to the calibration
since they do not affect simulated equivalents to measured
values. In the case that TSVD is used to solve the inverse
problem:

I� R ¼ V2V
t
2 ð17Þ

where V2 contains the posttruncation eigenvectors obtained
from TSVD of XtQX. Using (17), differences between
stochastic parameter realizations generated from C(p) and
the calibrated parameter values, which are constrained by
available measurements, can be projected onto the calibra-
tion null-space using:

p� p
st

� �0
¼ V2V

t
2 p� p

st

� �
ð18Þ

where pst represents the stochastic parameter values; (p �
pst)

0 is the projected vector of parameter differences; and,
(p � pst) represents the vector of parameter differences prior
to projection. Once calculated, (p � pst)

0 can be added to the
calibrated parameters to produce new parameter sets. Hence,
the projection operation described by equation (18) removes
components of the calculated parameter differences (p� pst)
that possess nonzero projections onto the calibration
solution space, so that (p � pst)

0 contains only those
components of the calculated parameter differences that
possess a zero projection onto the calibration solution space
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(see Golub and Van Loan [1989] for discussion of matrix
projections).
[23] If the model is linear and the TSVD truncation level

coincides exactly with the occurrence of zero singular
values, then every new parameter set derived by adding
(p � pst)

0 to the calibrated parameters would, by definition,
produce the same calibrated objective function, since (p �
pst)

0 would have no effect on simulated equivalents to
observation data. These conditions are rarely met since
the model is typically at least weakly nonlinear, and some
diminishingly small but nonzero singular values lie below
the TSVD truncation level. As a consequence, each new set
of parameters typically results in a (slightly) uncalibrated
model. This misfit must be remedied through recalibration.
In the context of groundwater modeling, recalibration could
be based upon a deformational technique such as that
described by Lavenue and de Marsily [2001]. However,
as described by LaVenue et al. [1995] this, and related
techniques, can be computationally intensive.
[24] Conditioning of each parameter set can, however, be

undertaken efficiently by employing existing sensitivities
calculated using the calibrated parameters. Further efficien-
cies can be achieved if the superparameter technique is used
to estimate a small number of linear combinations of the
base parameters, rather than estimating each base parameter
individually. Redefining each parameter set in terms of
superparameters, constructed on the basis of matrix X
corresponding to the calibrated parameter values, possesses
distinct advantages over conditioning on the basis of the
individual base parameters, and obtaining parameter sensi-
tivities independently for each stochastic parameter set.
[25] First, these superparameters span the calibration

solution space, and therefore comprise the orthogonal
complement of the null-space projected parameter differ-
ences that were generated as described above. Therefore,
recalibration focuses on parameter combinations that lie
within the calibration solution space, leading to efficient
conditioning. Second, no model runs are required to obtain
superparameter sensitivities during the first iteration of the
conditioning process: these sensitivities are calculated from
X and can be used directly within a modified Gauss-Newton
optimization of superparameters. Third, the use of super-
parameters greatly reduces the dimensionality of the inverse
problem that must be undertaken to condition each stochas-
tic parameter set. Therefore, fewer model runs are required
to calculate sensitivities if the first inverse iteration does not
achieve an acceptable objective function so that additional
conditioning iterations are required.

2.5. Incorporating Fine Detail

[26] The foregoing describes situations where the scale or
detail level of the model parameterization corresponds with
the true scale of parameter variability, that is, if no spatio-
temporal averaging of model parameters takes place. This,
however, is rarely the case. For example, in the context of
groundwater models, a value for hydraulic conductivity is
required for each model cell: however, calibration is usually
undertaken on the basis of parameterization devices such as
zones or pilot points.
[27] If calibration is undertaken using a parameterization

scheme that combines or otherwise groups model inputs in
any manner, the theory described above can still be applied.
Under these circumstances, the following process is under-

taken: (1) A stochastic parameter generator is used to
generate parameter sets on the model grid or element scale,
rather than using the same parameterization mechanism
employed in the calibration process. (2) Interpolation is
used to form the closest approximation to these stochastic
parameters that is achievable using the same parameteriza-
tion device that is used during the calibration. (3) These
parameters are projected onto the calibration null-space
using equation (18). (4) A difference is calculated between
the stochastic parameters and the interpolated parameters
calculated under step 2. (5) The values obtained from steps
3 and 4 are added to the calibrated parameters. (6) Recal-
ibration is undertaken using superparameters as described
above.
[28] This approach removes components of fine-scale

stochastic variability generated under (1) that are incompat-
ible with calibration data. This allows the calibration pro-
cess to employ a lumped parameterization scheme, while
leading to conditioned parameter sets that contain fine-scale
variability that is characteristic of real-world property var-
iability. The synthetic and real-world applications described
later employ fine-scale stochastic parameter generation in
combination with coarser-scale parameterization schemes.
[29] If the model were linear (or weakly nonlinear),

recalibration of each parameter set generated using the
techniques described above would require a single iteration
to minimize the objective function. If solution-space sensi-
tivities calculated using the calibrated parameters were
employed, this would require only one model run. However,
since nonlinearity causes parameter sensitivities to change
as parameter values change, the required nonlinear param-
eter estimation is iterative in nature: at each iteration, Dp is
computed using (5) and parameter sensitivities are recalcu-
lated using currently estimated parameter values p. The
process is then repeated. Note however that, as described
above, superparameters are estimated, so that the burden of
recalibration is comparatively light.

2.6. Use of the Broyden Rank-One Update

[30] Since the SSMC approach attempts to obtain the
greatest reduction in the objective function, F, that can be
achieved in one or perhaps two iterations, it is desirable to
maximize the progress that can be made using existing
sensitivities contained in the Jacobian matrix obtained
during original calibration of the model, obviating the need
to recalculate these sensitivities. Testing to date indicates
that inclusion of the Broyden rank one update [Broyden,
1965; Madsen and Nielsen, 2004; Skahill and Baggett,
2006] within the SSMC procedure improves objective
function minimization within the first, and, if necessary,
any subsequent recalibration iterations.
[31] The Broyden rank one update is a technique for

updating matrix X using information gained on any occa-
sion that a model run is undertaken, for example, when
testing the reductions in F computed using alternate values
of the Marquardt parameter. It is particularly beneficial
when it is expensive to compute X and/or when it is
desirable to obtain as great a reduction in F as possible
given one or perhaps two iterations. Indeed, Dennis and
Marwil [1982] indicate that use of such an update may be
most fruitful when the cost of obtaining a full new Jacobian
is sufficiently high: as a result, they recommend that the use
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of such an update is most effective between reevaluations
of X.
[32] It is in this sense that the Broyden update is

employed in the SSMC procedure: that is, the update is
employed only when calculating the parameter upgrade
vector Dp that results from alternate values of the Mar-
quardt parameter. In the case of the first iteration of the
SSMC recalibration procedure there is (essentially) nothing
to be lost, and everything to be gained in the use of the
update since this iteration is undertaken for ‘‘free’’ using an
existing Jacobian (Figure 1). If subsequent iterations are
required, the trade-off between a rapid update versus full
reevaluation of the Jacobian comes into play, and the
potential benefits are liable to be problem-specific. There-
fore, in the development of the SSMC approach, the ability
to undertake the Broyden rank-one update was included
with particular focus on the first recalibration iteration, and
with the possibility that it may prove beneficial during later
iterations, if required.
[33] In general application, where X is calculated using

parameters p, and Dp is calculated using equation (5) in
conjunction with a value for the Marquardt parameter, then:

Dp ¼ p
u
� p ð19Þ

where pu is the trial parameter set. If yu and y represent
simulated equivalents of the measured values, calculated
using pu and p respectively, Broyden’s rank one update is
used to calculate an updated sensitivity matrix Xu using:

Xu ¼ Xþ w Dp
� �t

ð20Þ

where:

w ¼ 1

DptDp
yu � y� XDp

� �
ð21Þ

Xu is then used to calculate subsequent parameter upgrades
using alternative values of the Marquardt parameter. In the
context of the SSMC procedure, the Jacobian matrix and the
parameter upgrade vector pertain to superparameters: none-
theless, application of the Broyden rank one update to the
estimation of superparameters directly parallels that de-
scribed by equations (20) and (21) for classical Gauss-
Newton parameter estimation.

2.7. Full SSMC Procedure

[34] The following narrative describes the stepwise ap-
plication of the SSMC technique, illustrated in Figure 1,
assuming that the superparameter technique is used for the
initial calibration, and subsequent conditioning of stochastic
parameters sets:
[35] 1. Construct the base model parameterization, calcu-

late base parameter sensitivities, and construct and calibrate
superparameters.
[36] 2. Calculate the base parameter sensitivity matrix, X,

using the calibrated parameters.
[37] 3. Undertake SVD of XtQX or Q1/2X, to obtain V1,

V2, E1, and E2.
[38] 4. Determine the dimensionality of the calibration

solution space: that is, the number of columns in V1 and V2,
respectively.
[39] 5. Determine the scale for stochastic parameter

generation. Generate multiple sets of random parameters
on the basis of C(p).
[40] 6. Calculate V2V2

t , and project differences between
stochastic parameters and the calibrated parameters onto the
calibration null-space.
[41] 7. Add these projected differences to calibrated

parameter values.
[42] 8. Recalibrate the underlying superparameters. The

first iteration is achieved using existing sensitivities calcu-
lated under step 2. Additional iterations require recalcula-
tion of superparameter sensitivities. Since there is usually a
small number of superparameters, the calculation of super-
parameter sensitivities is efficient.
[43] In summary, the new SSMC technique is founded

upon generating stochastic parameter sets that reflect the
errors in estimated parameters p that are described by the
first term of equation (16). To the extent that addition of
these values to the calibrated parameters decalibrates the
model, solution space parameter projections are then ad-
justed to achieve an objective function that is commensurate
with the characteristics of measurement noise as described
by the second term of equation (16). Hence both terms of
this equation are respected in the stochastic generation and
recalibration processes. Recalibration is efficient because
(1) the addition of null-space projected stochastic parameter
differences to the calibrated parameters does not lead to
substantial decalibration; (2) only the small number of
superparameters requires estimation to recalibrate the model;
and (3) for each stochastic parameter set, the first recalibra-
tion iteration is undertaken using existing solution space
sensitivities calculated with the calibrated model.

Figure 1. Schematic of the subspace Monte Carlo
(SSMC) analysis procedure.
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2.8. Assumptions and Approximations

[44] Some assumptions and approximations involved in
the new SSMC procedure are now summarized.
[45] First, when inversion is undertaken using subspace

methods, the definition of the solution and null subspaces is
approximate, since the parameters generated throughout the
SSMC process deviate from the calibrated values. Hence,
the null-space projection described by equation (18)
becomes inexact. However, errors incurred through this
approximation are mitigated since the recalibration that is
undertaken to condition each stochastic parameter set is
nonlinear. Furthermore in each case the SSMC technique
results in numerous parameter sets that are calibrated in
accordance with C(e).
[46] Second, the results of the analysis may differ

depending on the definition of the dimensions of the
calibration and null subspaces. If the TSVD truncation level
is set too high, each stochastic parameter set may require
many model executions to condition; whereas, if the
truncation level is set too low, each stochastic parameter
set may not require conditioning, but may lead to unreal-
istically narrow predictive variability. Testing using the
synthetic model described later suggests that this trade-off
can be refined using a sequentially increasing number of
superparameters.
[47] Third, in the examples discussed later, recalibration

is considered successful if a level of misfit is achieved that
is commensurate with that achieved in the initial calibration.
Rigorous theory for calculating objective function thresh-
olds corresponding to various levels of calibration confi-
dence is in fact available [Vecchia and Cooley, 1987; Tonkin
et al., 2007]. Although the theory exists, rigorous imple-
mentation of it can be difficult in practice since the
stochastic characteristics of measurement noise and of
structural noise induced through the parameterization
scheme (and indeed by the model itself) are never known
precisely and are computationally intensive to evaluate [see
Cooley, 2004]. Hence, in the examples presented later this
theory is not employed since formulation of a stochastic
descriptor for errors associated with the various components
of the multicomponent objective functions employed in
them is beyond the scope of this article.
[48] Finally, in this study it is assumed that perturbation

sensitivities are used throughout the SSMC analysis. How-
ever, the sensitivity equation method, adjoint techniques,
and/or the method of automatic differentiation (AD) could
be used. AD is a broad methodology for obtaining forward
or reverse (adjoint) derivatives. AD exploits the fact that
computer programs execute a sequence of arithmetic oper-
ations and/or functions, regardless of the complexity of the
computer model, and that application of the chain rule of
derivative calculus to these operations can be used to
automatically compute derivatives [Sambridge et al.,
2007]. It should be noted, however, that the use of pertur-
bation sensitivities does enable the SSMC method to be
used with any model or sequence of models, without any
specialized programming requirements.

3. Applications

[49] The methodology is first applied to a synthetic
groundwater flow-and-transport model that represents the

major features of a real-world site. It is then applied to a
real-world lumped parameter watershed model, developed
to simulate parts of the Dawson River catchment of Central
Queensland, Australia.
[50] The purpose of describing the synthetic application

is threefold. The first objective is to illustrate the steps
undertaken in an SSMC analysis. The second objective is to
contrast the results obtained using alternate Monte Carlo
techniques with the SSMC procedure. The third objective is
to contrast the efficiency of the SSMC recalibration process
when conditioning parameters (1) to groundwater heads
only and (2) to groundwater heads and contaminant con-
centrations. The purpose of describing the real-world appli-
cation is twofold. The first objective is to illustrate that the
SSMC approach is suitable for real world applications. The
second objective is to demonstrate that the SSMC approach
is not limited to any particular model or to any particular
parameterization device.

3.1. Synthetic Groundwater Model

[51] The synthetic groundwater flow-and-transport model
is based upon that described by Tonkin et al. [2007], and
developed to evaluate the possible threat posed to a deep
production well by a shallow source of contaminants. The
question posed is ‘‘Could contaminants released to a shallow
aquifer contaminate water recovered from a deep aquifer?’’
[52] The flow system is characterized by two aquifers

separated by a semiconfining unit. The system is simulated
using MODFLOW-2000 [Harbaugh et al., 2000], using two
explicit layers separated by a confining bed. The logarithms
(to base 10) of hydraulic conductivity in the aquifers and
aquitard are generated using the sequential field generator
SGSIM [Deutsch and Journel, 1992] using exponential
variograms with a range of 150 m and sill of 0.15 for the
aquifers, and a range of 200 m and sill of 0.3 for the
aquitard. The vertical anisotropy within the aquifers is set at
1:10. Steady state constant transmissivity (‘‘confined’’) flow
is simulated, using general head boundaries up and down
gradient, and no-flow lateral boundaries. A production well
is located in the deep aquifer (Layer 2); see Figure 2.
[53] Using this hypothetical scenario, two model calibra-

tions and subsequent SSMC analyses were undertaken: the
first, based only on observations of groundwater head; the
second, based on observations of groundwater head and
contaminant concentration. The objective of the first SSMC
analysis is to illustrate the steps undertaken in the SSMC
analysis process, and contrast the results obtained using
alternate Monte Carlo techniques with the new SSMC
approach when only head data are available to constrain
parameters. The objective of the second SSMC analysis is
to contrast the results obtained using only head data with
those obtained when head and concentration data are
available to constrain parameters.
[54] Figure 2 depicts the layout of the synthetic model

domain. For calibration purposes, hydraulic conductivity is
parameterized using 792 pilot points, 264 for each aquifer
and for the aquitard, distributed evenly throughout the
model domain. In the pilot point approach, parameter values
are estimated at a number of discrete locations (the pilot
point locations), and assignment of parameter values
throughout the model domain takes place through spatial
interpolation from the pilot points to the model nodes
[Certes and de Marsily, 1991; RamaRoa et al., 1995; Hunt
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et al., 2007]. In the present study, initial values for pilot
points were provided as the (known) mean hydraulic
conductivity of each layer. These pilot points constitute
the base parameters of the superparameter scheme used to
calibrate the model.
[55] RamaRoa et al. [1995] and LaVenue et al. [1995]

describe the use of pilot points for automated calibration of
an ensemble of transmissivity fields, to develop frequency
distributions for aquifer transmissivities and for model out-
puts constituting predictions of future system state. LaVenue
et al. [1995] state that one drawback of their method is the

computational burden. It is now demonstrated that the
SSMC technique greatly reduces the computational burden
of this kind of analysis.
3.1.1. Calibration: Heads Only
[56] Heads calculated by the model using the true param-

eters were used to generate data for 65 hypothetical mon-
itoring wells in each model layer (Figure 2). Paired screens
in the shallow and deep aquifers provide colocated water
level data. Gaussian noise with a standard deviation of
0.05 m was added to simulated heads. The calibration data
therefore comprised 130 head observations.
[57] To obtain the base parameter sensitivity matrix, X,

and undertake the model calibration and SSMC analysis,
only the flow model was executed, this requiring less than a
second for each model run. One hundred and twenty (120)
superparameters were constructed through TSVD of Q1/2X.
Calibration of the superparameters was completed on a
single PC. Execution of the model with the best fit param-
eters results in a value for F of 35.
3.1.2. SSMC Analysis: Heads Only
[58] Several adaptations of stochastic parameter genera-

tion were employed to generate multiple realizations of
hydraulic conductivity parameter sets. In all cases the true
(known) variogram was used to generate the stochastic
parameters. The parameter sets were then evaluated by
contrasting the F’s calculated using each of these parameter
sets with that achieved using the true parameters. The
techniques employed are as follows:
[59] 1. Method H1 is stochastic parameter generation and

direct assignment of values to pilot point parameters.
[60] 2. Method H2 is extension of H1 through projection

of parameter value differences onto the calibration null-
space using (18).
[61] 3. Method H3 is unconditioned stochastic parameter

generation on the model node scale.
[62] 4. Method H4 is the SSMC method, incorporating

node-scale stochastic parameterization as described in
section 2.5, with one recalibration iteration completed
using superparameters and the existing superparameter
sensitivities.
[63] 5. Method H5 is the SSMC method, incorporating

node-scale stochastic parameterization as described in
section 2.5, with two recalibration iterations completed
using superparameters. Existing superparameter sensitivities
are used for the first iteration, and recalculated during the
second iteration.
[64] Methods H1 and H2 employ stochastic parameter

generation at the level of detail used in the calibration (in
this case, pilot points), while methods H3, H4, and H5
employ stochastic parameter generation at the node scale.
Methods H4 and H5 both employ the Broyden rank-one
update to upgrade the terms of the Jacobian matrix during
testing of alternate values of the Marquardt parameter. The
range of objective functions obtained through each of the 5
methods can be assessed by computing the mean and
variance of the objective function; or, by collecting results
into a frequency histogram and/or a cumulative density
function.
[65] Figure 3 illustrates the values for F for the ensemble

of models obtained using each of the 5 methods. The
increasingly skewed pattern of the histograms illustrates
the improvements gained through the projection of differ-

Figure 2. Synthetic model domain illustrating the source
area, supply well, hypothetical monitoring wells, and pilot
points used to parameterize hydraulic conductivity.
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ences between stochastic pilot point parameter values and
their calibrated counterparts onto the calibration null-space
(contrasting H2 with H1); and, the improvements gained
through the use of the SSMC technique versus uncondi-
tioned node-based stochastic parameter generation when
undertaken with one recalibration iteration (contrasting H4
with H3), or, with two recalibration iterations (contrasting
H5 with H4).
[66] Perhaps most strikingly, the histogram illustrating the

ensemble values for F achieved by the single-iteration
application of the SSMC technique (H4) is located entirely
to the left of the histogram illustrating the ensemble values
for F achieved by the unconditioned multi-Gaussian field
generator (H3). Results of the two-iteration application of
the new SSMC technique (H5) are also striking. The
improvements in the objective functions between H4 and
H2 were obtained with an average of 6 model runs for each
parameter set. Subsequent improvements in the values for F
between H5 and H4 were obtained with an average of 126
model runs for each parameter set. At the conclusion of the
two-iteration SSMC procedure 90% of the stochastic pa-
rameter sets led to an objective function of less than 1.5
times the calibrated value of 35.
[67] The lowest value of F achieved using each method

was 363 (H1), 39.5 (H2), 636 (H3), 33.9 (H4) and 31.6 (H5),
respectively: note that the SSMC recalibrations actually led
to minimum values for F lower than that obtained with the
original calibration. This is unsurprising since the SSMC
recalibrations combine the pilot point parameterization
scheme with stochastic parameter fields generated on the

same scale and using the same variogram as the ‘‘true’’
model, and hence more effectively represent the variability
in the ‘‘true’’ model than does the pilot point parameteriza-
tion scheme when used alone in the original calibration.
[68] As mentioned earlier, the results of the SSMC

analysis may differ depending on the user-defined dimen-
sions of the solution and null subspaces. Testing on the
synthetic flow model using a sequentially increasing num-
ber of superparameters (30, 60, and 120) revealed some
differences, in terms of the histograms of the ensemble
values for F, between results achieved with 30 and 60
superparameters, but no substantial differences between
results achieved with 60 and 120 superparameters. This
reinforces the concept of the trade-off between computa-
tional efficiency and the rigorous exploration of predictive
error described by Tonkin et al. [2007].
[69] This example demonstrates that the SSMC technique

can produce many sets of hydraulic conductivity parameters
that can be rapidly recalibrated when using only heads for
conditioning. However, the benefit in using concentration
data together with groundwater heads for conditioning
groundwater model parameters is well established [e.g.,
Hendricks Franssen et al., 2003]. The objective of the
second SSMC analysis is to contrast the performance of
the SSMC technique when using only head data with its
performance when both head and concentration data are
available to constrain parameters.
3.1.3. Calibration: Heads and Concentrations
[70] For this analysis, it is assumed that measurements of

groundwater head and concentration are available. Contam-

Figure 3. Comparison of objective functions obtained by parameter ensembles using five Monte Carlo
techniques.
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inant transport is simulated using MT3DMS [Zheng and
Wang, 1999]. In the true model, a known time-varying
contaminant source is simulated in the shallow aquifer
upgradient and lateral to the production well. The true
model calculates a peak concentration at the production
well of 221 micrograms per liter (mg/L), 1289 days follow-
ing the contaminant release (t = 1289). Of the many
parameter sets generated, this case was selected as reality
because the concentration calculated at the production
well by the model when calibrated using layer-specific
parameters is benign, although in the true case the well is
contaminated.
[71] The 130 head observations discussed earlier (Figure 2)

were supplemented by concentrations simulated at the wells
by the model using the true parameters, with paired screens
in the shallow and deep aquifers providing colocated
concentration data. Gaussian noise was added to the logs
of simulated concentrations to generate concentration ob-
servation data; the standard deviation of this noise is equal
to 15% of the mean of the natural logs of the concen-
trations. A hypothetical analytical method-reporting limit
of 0.01 mg/L is mimicked in the regression. The calibra-
tion data set hence comprises 130 head observations and
390 concentration observations, the latter mimicking three
groundwater sampling events occurring at t = 500, 650
and 800 days. When the model is executed using calibrated
layer-specific parameter values (in which only 3 parame-
ters feature in the parameter estimation process, each
corresponding to an entire model layer), the peak concen-
tration at the well is below the hypothetical method-
reporting limit.
[72] To obtain the base parameter sensitivity matrix for

the pilot point parameters illustrated in Figure 2, and
undertake the model calibration and SSMC analysis, the
flow and transport models were executed for sufficient time
to obtain simulated equivalents to all observations (i.e., a

simulation time of 800 days). One hundred and twenty
(120) superparameters were constructed through TSVD of
Q1/2X. Calibration of the superparameters was completed
on a parallel PC network. Executing the model with the
calibrated parameters results in a value for F of 43,700.
Figure 4 illustrates weighted simulated versus observed
concentrations for the layer-specific parameters and the
calibrated superparameters. Concentrations measured and
simulated below the hypothetical method reporting limit of
0.01 mg/L cluster in the vicinity of �21, the log of 0.01
times the observation weight. Executing the model with the
best fit parameters results in a peak contaminant concentra-
tion at the production well of 205 mg/L that occurs about
1,190 days following the release. In this instance, the
predicted concentration in the well is quite close to the true
value. This might provide some confidence that the predic-
tion is accurate: however, the SSMC technique is now used
to evaluate the uncertainty in the concentration simulated at
the well, demonstrating that the good agreement between
the prediction and reality may be fortuitous.
3.1.4. SSMC Analysis: Heads and Concentrations
[73] Since the heads-only SSMC analysis indicated that

two of the stochastic parameter generation techniques
(unconditioned stochastic generation of pilot point param-
eter values and unconditioned stochastic field generation on
the scale of the model cells) led to unacceptable results, only
three techniques are contrasted to evaluate the effect of
using head and concentration data to constrain parameters:
[74] 1. Method HC1 is node-scale stochastic parameter-

ization, as described in section 2.5, following null-space
projection of parameter differences using (18) but prior to
recalibration. Hence, for each parameter set, this provides
the objective function at the commencement of the follow-
ing SSMC recalibrations.
[75] 2. Method HC2 is the SSMC method, incorporating

node-scale stochastic parameterization as described in
section 2.5, with one recalibration iteration completed
using superparameters and the existing superparameter
sensitivities.
[76] 3. Method HC3 is the SSMC method, incorporating

node-scale stochastic parameterization as described in sec-
tion 2.5, with two recalibration iterations completed using
superparameters. Existing superparameter sensitivities are
used for the first iteration, and recalculated during the
second iteration.
[77] Thus, all three methods HC1, HC2, and HC3 employ

stochastic parameter generation at the node scale. Methods
HC2 and HC3 employ the Broyden rank-one update to
upgrade matrix X during testing of alternate values of the
Marquardt parameter. The results are evaluated by contrast-
ing the objective functions calculated using each of the three
approaches together with those calculated using the cali-
brated parameters. The concentrations simulated at the
pumping well by the SSMC analysis following two recal-
ibration iterations are compared with the concentrations
simulated by the calibrated model, and those simulated
using the true parameters.
[78] Figure 5 illustrates the values for F for the ensemble

of models obtained using the 3 approaches. Again, the
increasingly skewed pattern of the histograms illustrates
the improvements gained through the use of the SSMC
technique versus the simple null-space projection using

Figure 4. Simulated versus observed concentrations for the
layer-specific calibration and superparameter calibration.
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equation (18) when undertaken with one recalibration
iteration (contrasting HC2 with HC1), or, with two recali-
bration iterations (contrasting HC3 with HC1). While HC2
does show significant improvement over HC1, the histo-
gram illustrating the ensemble values for F achieved by the
two-iteration application of the SSMC technique (HC3) is
located almost entirely to the left of the histogram illustrat-
ing the ensemble values for F achieved by the null-space-
projected stochastic parameters (HC1).
[79] Over one third of the parameter sets created using the

two-iteration SSMC approach led to an objective function
less than 1.1 times the calibrated value. (Neither the single-
iteration SSMC nor the parameter null-space projection
produced any parameter sets that resulted in an objective
function of less than 1.1 times the calibrated value.)
Furthermore, over 80% of the parameter sets created using
the two-iteration SSMC approach led to an objective
function less than 1.5 times the calibrated value; this
contrasts with 28% for the single-iteration SSMC, and about
10% for the parameter null-space projection. As for the
heads-only case, several parameter fields generated follow-
ing the second SSMC recalibration iteration led to objective
functions below the minimum obtained by the calibration.

[80] Figure 6 illustrates the concentrations calculated at
the well using the true parameters, and using parameters
computed through superparameter calibration. Also shown
are the time-varying maximum, minimum, and average
concentrations calculated using stochastic parameter sets
achieved at the conclusion of the two-iteration SSMC
process. (Recall that the peak concentration calculated at
the well using the layer-specific calibrated parameters was
less than the hypothetical reporting limit.) Figure 6 illus-
trates that the bounds of predicted time-varying concentra-
tions at the well generally encompass the concentrations
calculated using the true parameters, although the peak
concentration is not quite encompassed: this latter outcome
may suggest that a larger number of parameter ensembles is
required to fully encompass the peak, despite the fact that
the parameter ensemble predicts very similar concentrations
at earlier and later times. It is noteworthy that the time-
varying concentrations calculated by the ensemble param-
eter sets are far more realistic than the concentrations
calculated using the layer-specific parameters.
3.1.5. Discussion of Synthetic Model Results
[81] In the case that only head observations are available

for calibration, Figure 3 illustrates the benefits gained
through projection of differences between the stochastic

Figure 5. Comparison of objective functions obtained by parameter ensembles using the SSMC
procedure.

Figure 6. Concentrations at the well in the true model, superparameter calibration, and the time-varying
maximum, minimum, and average concentrations from the two-iteration SSMC analysis.
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parameters and calibrated parameters onto the calibration
null-space. It also illustrates the improvements gained
through use of the SSMC technique after one or two
recalibration iterations. In the case that both heads and
concentrations are available for calibration, Figure 5 illus-
trates the improvements gained through use of the SSMC
technique after one or two recalibration iterations. Although
in the latter case the reductions in the composite objective
function appear less dramatic than when conditioning to
head observations only, both the first and second recalibra-
tion iterations led to substantial reductions in the composite
objective function. This is a very good result, as experience
with the calibration of flow-and-transport models demon-
strates that the use of both groundwater head and contam-
inant concentration data for conditioning places far greater
demands on the calibration process than the use of heads
alone.
[82] Application of the SSMC procedure to the synthetic

flow-only and flow-and-transport models indicated that it
might be possible to identify, before commencing the first
iteration of SSMC recalibration, whether some of the
stochastic parameter sets might not successfully recalibrate;
and, more importantly, whether at the conclusion of the first
iteration it might be possible to identify which parameter
sets should be rejected or retained for the second recalibra-
tion iteration, since the second iteration requires recalcula-
tion of superparameter sensitivities. While the authors have
not developed any rigorous theory for these decisions at this

time, some pragmatic options are now discussed, using the
real-world modeling example.

3.2. Real-World Watershed Management Model

[83] Recently, the Land Resource Assessment branch of
the Queensland Department of Natural Resources and Water
(NR&W), Queensland, Australia, developed a hydrological
and sediment transport model encompassing 40,381 km2 of
the Dawson Valley, a major branch of the Fitzroy River
Catchment, in central Queensland, Australia (Figure 7). The
purpose of this model is to simulate streamflow and
sediment transport within the rivers that drain the Fitzroy
River Catchment, as part of a wider study of the effects of
land management practices on sediment transport to the
Great Barrier Reef. The climate within the study area is
subtropical, with an average annual rainfall of about 700 mm.
Much of this rainfall occurs during summer storms driven by
cyclonic influences. The primary reason for development of
the model was for evaluation of sediment yield. However,
since work on the sediment transport modeling is (at the time
of writing) in progress, the discussion presented here focuses
on the simulation of flow.
[84] The model was built using the E2 catchment mod-

eling system [Argent et al., 2006], which provides a
framework for constructing node link models of arbitrary
complexity over catchments of arbitrary size. A node is
located at a confluence, and/or at a location where subcatch-
ment water and/or sediment enters the system. Links route
and process water and constituents as they move from node
to node. In this study, the SYMHYD rainfall-runoff model,
one of the rainfall-runoff models available in the E2 system
[Cooperative Research Centre for Catchment Hydrology,
2004], was used to compute the flow of water from
subcatchments to nodes. Hydrologic routing within links
was simulated using the nonlinear Laurenson algorithm
[Laurenson and Mein, 1997].
[85] The model domain is divided into 119 subcatchments

(Figure 7), which range in area from 0.75 to 1274 km2.
Land use within the model domain is divided into 7
categories (Table 1), the most dominant of which is grazing
(GRZ).
[86] The model is typical of many used as a basis for the

study and regulation of land management practices, since it
is required to represent hydrologic processes and land
management decisions at a level of detail corresponding
with anticipated changes. However, this requires that
hundreds or thousands of parameter values be represented
in the model. Although lumping of parameters is often used
to achieve stable calibration and parameter identifiability,
parameter aggregation of this type should ideally be aban-

Figure 7. Location and extents of the watershed model,
showing the distribution of subcatchments and location of
gaging stations.

Table 1. Land Use Type and Abbreviations in the Real-World

Watershed Model

Land Use Type Abbreviation

Cropping CRP
Grazing GRZ
Grazed state forest GSF
Horticulture HOR
Nature conservation NAT
Residential RES
Water WTR
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doned when exploring predictive error since in reality
hydraulic properties may show considerable variability
between subcatchments that may, in turn, affect the vari-
ability of model predictions.
3.2.1. Calibration Data
[87] Historic records of daily flow are available through

all or part of a 20 year calibration period between and
including the years 1986 to 2005 at seven gauging stations
(Figure 7 and Table 2). The model calibration employed a
multicomponent objective function composed of (1) daily
flows weighted according to the inverse square root of
observed flows, (2) monthly volumes computed on the
basis of these flows, and (3) flow exceedence time abscissae
at a flow log interval of 2 per decade (Table 2).
3.2.2. Parameterization
[88] The number of separate SYMHYD instances within

the model equals the number of ‘‘functional units’’ (FUs),
where a single functional unit comprises a specific land use
within a specific subcatchment. The Fitzroy Catchment
model is composed of 119 
 7 = 833 FUs, together with
119 links. Since the SIMHYD model employs 9 parameters,
in addition to the two parameters employed by the Lau-
renson routing algorithm (Table 3), the model notionally
employs 7,735 parameters: 9 parameters for each of 833
FUs, plus 2 parameters for each of 119 links. The number of
parameters requiring estimation in this study was reduced
by directly assigning values to the impervious fraction for
all land uses excepting residential, and to the water (WTR)
land use type, which occupies a very small fraction of the
land use within the model domain. Nonetheless, regulariza-
tion is required to stabilize the inverse problem since this
notionally leaves 6,188 parameters that require values be
assigned.

3.2.3. Calibration
[89] Parameter estimation was accomplished using the

hybrid Tikhonov-TSVD technique. During calibration
SYMHYD parameters of the same type pertaining to the
same land use were grouped (i.e., assumed to be equal)
according to the most immediate downstream gauging
station. Similarly, all links were temporarily assumed to
possess identical Laurenson parameters. The number of
parameters requiring estimation was thereby reduced to
345. These groupings were abandoned during subsequent
SSMC analyses.
[90] Tikhonov regularization was implemented by includ-

ing prior estimates of parameter values, developed in
collaboration with NR&W personnel, in the inversion
process. The weights assigned to these Tikhonov regulari-
zation equations were updated throughout the constrained
optimization inverse process that sought to maximize the
goodness of fit between model outputs and field measure-
ments while minimizing the departure of parameters from
their preferred values [Tikhonov and Arsenin, 1977; Doherty
and Skahill, 2006]. The combined use of mathematical
(Tikhonov) and manual (parameter grouping) regularization
was implemented in an effort to obtain a maximum likelihood
parameter set. Such a parameter set is, of necessity, a
simplified set fromwhich any complexity that is not inferable
from the calibration data set is eliminated. However, the
SSMC evaluation that follows restores parameter complexity.
[91] The base parameter sensitivity matrix, X, was calcu-

lated using a parallel PC-based computer network, and
Q1/2X was then formed. TSVD of Q1/2X, in accordance
with equation (9), was used to construct 35 superparameters.
A solution space dimensionality of 35 was adopted after
testing alternatives: the use of fewer superparameters pre-
vented the attainment of an acceptable fit between model
outputs and historical flows, while use of more superpara-
meters resulted in high condition numbers, and a numeri-
cally unstable inverse problem.
[92] Calibration was undertaken on the same parallel PC-

based computer network. The value of composite objective
function was reduced from 22,800 at the commencement of
the hybrid Tikhonov-TSDV superparameter inversion pro-
cess, where parameters were assigned their preferred values,
to an optimized value of 6,800. Figure 8 illustrates the
typical correspondence between model-calculated and ob-
served flows, using a 2 year segment of the calibration
period at the 130322A gauging station.

Table 2. Observations Used in the Calibration of the Real-World

Watershed Model

Gauging
Station Location

Number of Daily
Flow Observations

130302A Dawson River at Taroom 6864
130313A Palm Tree Creek at La Palma 2307
130316A Mimosa Creek at Redcliffe 1885
130317B Dawson River at Woodleigh 6647
130322AA Dawson River at Beckers 4425
130324A Dawson River at Utopia Downs 7305
130344A Juandah Creek at Windamere 1347

Table 3. Parameters Calibrated in the Real-World Watershed Model

Parameter Description Units Range Abbreviation Model

Base flow coefficient none 0.0–1.0 BASE SYMHYD
Impervious threshold none 0.0–5.0 IMPT SYMHYD
Infiltration coefficient d�1 0.0–400.0 INFC SYMHYD
Infiltration shape none 0.0–10.0 INFS SYMHYD
Interflow coefficient d�1 0.0–1.0 INTC SYMHYD
Pervious fraction none 0.0–1.0 PERF SYMHYD
Rainfall interception store capacity mm 0.0–5.0 RISC SYMHYD
Recharge coefficient d�1 0.0–1.0 RECO SYMHYD
Soil moisture store capacity mm 1.0–1000.0 SMSC SYMHYD
K s 0 to several days K LINK ROUTINGa

M none 0.6–1.0 M LINK ROUTINGa

aEmploys the Laurenson nonlinear lag procedure which uses the storage-outflow relationship S(Q) = KQm [Laurenson and Mein, 1997].
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3.2.4. SSMC Analysis
[93] In undertaking the SSMC analysis, parameter group-

ing that was employed during the calibration process to
reduce the number of parameters from 6,188 to 345 was
abandoned. In consultation with NR&W personnel, a C(p)
matrix was constructed to characterize the potential vari-
ability of the 6,188 base parameters employed by the model,
throughout the model extent. This C(p) matrix was devel-
oped to respect understanding of natural hydraulic property
variability, together with ordering relationships between
parameters of the same type pertaining to different land
uses.
[94] For this study, a calibration threshold objective

function value of 7,000 was selected on the basis of visual
evaluation of many model results. Hence, the SSMC anal-
ysis focused on obtaining parameter sets that respect C(p)
while resulting in an objective function no greater than
7,000. Since the model required 6 min to execute, efficiency
was an important consideration, and pragmatic decisions
were made during recalibration. The following strategy was
adopted:
[95] 1. Parameter realizations were generated using the

C(p) covariance matrix.

[96] 2. Differences between each realization and the
calibrated parameter set were projected onto the calibration
null-space using equation (18), and added to calibrated
parameter values.
[97] 3. The value of the objective function was then

calculated: if the objective function was greater than
10,000 that parameter set was abandoned on the basis that
it was unlikely to achieve recalibration in two iterations.
[98] 4. Recalibration of the retained parameter sets was

undertaken using 35 superparameters constructed using
sensitivities obtained using the calibrated model.
[99] The first iteration of the recalibration process was

undertaken using superparameters constructed at the com-
pletion of the initial model calibration (Figure 1). For
parameter sets that required a second calibration iteration,
35 model runs were required to update sensitivities and
undertake a modified Gauss-Newton optimization of the
superparameters. If the threshold objective function was not
achieved within two iterations, the parameter set was
abandoned and recalibration of the next parameter realiza-
tion commenced.
[100] Three hundred (300) stochastic parameter sets were

generated and subjected to steps 1–4 above. Of these, 133
parameter sets achieved an objective function below 7,000.
Hence, application of the SSMC approach, following model
calibration, resulted in the production of 134 parameter sets:
one of these 134 comprised the calibrated parameters, while
the remaining 133 consisted of random parameter realiza-
tions that are hydrologically reasonable, respect necessary
ordering relationships embodied in C(p), and result in a
model that is as well calibrated as the ‘‘calibrated model.’’
[101] On average, the acquisition of each new calibration-

constrained parameter set, requiring the assignment of
values to 6,188 parameters, required about 15 model runs.
Figure 9 and Table 4 illustrate that obtaining the new
calibration-constrained parameter sets benefited greatly
from the null-space projection step of the SSMC technique.
Figure 9a illustrates the distribution of objective functions
computed with 100 stochastic parameter realizations before
null-space projection using equation (18) and with no
recalibration. Figure 9b illustrates the distribution of objec-
tive functions for the same parameter sets following null-
space projection using equation (18) but again prior to
recalibration.

Figure 8. Correspondence between simulated and mea-
sured flow at 130322A in the watershed model.

Figure 9. Distribution of objective functions computed with 100 stochastic parameter realizations
(a) before null-space projection and recalibration and (b) following null-space projection.
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[102] It is evident from comparison of Figures 9a and 9b
that the projection of the differences between the calibrated
and stochastic parameters onto the calibration null-space
using equation (18) led to significant improvement in the
objective function, and ensured that recalibration com-
menced from a much improved starting condition than from
simple stochastic parameter generation. Given that follow-
ing recalibration 133 parameter sets resulted in objective
functions at or below the target value of 7,000 after only
two parameter estimation iterations based on 35 super
parameters, the first iteration of which required no model
runs for calculation of sensitivities, it is evident that the
recalibration process leads to further, significant, reduction
in the objective function at only a mild computational cost.
[103] Figure 10 illustrates the fit between the measured

flows for a part of the calibration period at one of the gaging
stations used in the calibration process, and the time-varying
minimum and maximum flows calculated by the calibration-
constrained stochastic parameter sets at the conclusion of the
SSMC procedure. Figure 11 illustrates a histogram of the
variability in values for a single SYMHYD parameter in one
particular FU for the 133 parameter sets.
3.2.5. Discussion of Real-World Model Results
[104] The 133 sets of parameters obtained using the

SSMC approach described above could each be used with
the model to evaluate a variety of model outputs. For this
study, the model was used to evaluate streamflow at gage
130322A, located at the outflow (or pour point) of the
model domain, during a 6-week period from December
1973 through January 1974. During this period, more
rainfall occurred within the overall catchment than occurred

over any interval of the same length within the 20 year
model calibration period. Streamflow at gage 130322A was
calculated using the calibrated parameters, using the 133
calibration-constrained SSMC parameter sets, and then
compared to measured flows over this period.
[105] Figure 12 illustrates flows at gage 130322A as

simulated on the basis of 10 of the 133 parameter realiza-
tions, including those that gave rise to maximum and
minimum flow peaks, together with the observed flows
over this period. It is apparent from Figure 12 that there is a
high degree of uncertainty associated with the prediction of
peak flow at gage 130322A. Nonetheless, the uncertainty
interval encompasses the observed peak of the dominant
flow event. The uncertainty interval does not encompass
later, smaller, events. Discussions with NR&W personnel
suggest that this may be an outcome of the fact that the
management of water storage in dams, including one
located upstream of gage 130322A, is not well represented
within the model during this period. (This is in addition to
errors accrued through use of a lumped parameter model in
the first place.)
[106] Ongoing use of the parameter sets computed

through SSMC analysis for examination of predictive un-

Table 4. Objective Function Values Obtained Before and After

Null-Space Projection

Summary
Statistic

Objective Function
Before Null-Space

Projection

Objective Function
After Null-Space

Projection

Average F 57,017 11,822
Median F 40,161 8,398
Minimum F 11,209 7,152
Maximum F 269,420 108,830

Figure 10. Correspondence between measured flows and
the time-varying minimum and maximum flows calculated
at the conclusion of the SSMC procedure at gage 130322A.

Figure 11. Histogram of RISC parameter values for the
GRZ land use type at subcatchment 33.

Figure 12. Observed flows at gage 130322A together with
calibrated flows and flows calculated at the conclusion of
the SSMC procedure, including those that gave rise to the
maximum and minimum flow peaks.
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certainty has demonstrated that the uncertainty associated with
changes in flow and sediment yield resulting from changes in
land management practices show less uncertainty that do the
absolute flows demonstrated here. This is encouraging since it
suggests that in spite of the considerable uncertainty associated
with absolute predictions made by models of this type, relative
predictions resulting from changes in management practices
can be successfully explored.

4. Concluding Remarks

[107] Under ideal circumstances the single parameter set
obtained through model calibration yields model predictions
that approach maximum likelihood. This does not guarantee
that these predictions are correct: it means that to the extent
that they are likely to be incorrect, the simulated prediction
represents a central tendency, and variability in the predic-
tion is relatively evenly distributed about this value. Tech-
niques developed to enable calculation of the potential error
in model predictions are often computationally intensive
when implemented with highly parameterized models and,
perhaps as a result, are rarely implemented in common
modeling practice.
[108] This paper presents an efficient technique for inves-

tigating the uncertainty associated with the outputs of highly
parameterized models which blends error variance theory
with a Monte Carlo implementation. The SSMC technique
complements the use of highly parameterized models by
enabling efficient computation of many different parameter
realizations that (1) provide an acceptable fit between model
outputs and measured data and (2) are physically reason-
able, as measured by stochastic descriptors of real-world
parameter variability.
[109] Model calibration always involves some form of

parameter parsimony to achieve uniqueness: indeed, the
superparameter technique of Tonkin and Doherty [2005]
implements parsimony to achieve a stable solution. What-
ever form the parsimony takes, if it is retained after
calibration for predictive uncertainty analysis it may result
in the calculation of narrower likelihood intervals than are
reasonable. The SSMC procedure enables simplifications
required during calibration, regardless of the parameteriza-
tion technique used, to be abandoned when evaluating
uncertainty, allowing fine-scale parameter detail to be
incorporated.
[110] Using the SSMC technique, acceptable model-to-

measurement fits are ensured by a procedure that includes
the projection of differences between stochastic and cali-
brated parameter sets onto the calibration null-space, fol-
lowed by enforcement of calibration constraints through
recalibration. Efficient recalibration is achieved by using
existing solution space sensitivities to undertake the first
calibration iteration, and perturbing and estimating a limited
number of superparameters during subsequent iterations.
This approach possesses two distinct advantages: first, no
model runs are required to obtain sensitivities during the
first iteration; second, the reduced dimensionality requires
that only a limited number of model runs be undertaken to
calculate superparameter sensitivities during subsequent
iterations, if these are required.
[111] Although the approach is nonlinear, linearity-based

concepts are employed in the definition of orthogonal
calibration solution and null subspaces that underpins the

methodology. Use of subspaces defined using sensitivities
calculated with the simplified calibrated parameter set to
explore the potential error in predictions made by highly
nonlinear models may incur errors in the assignment of
confidence limits to predictive ranges. However, these
errors are unlikely to be much greater than those incurred
through assuming that any particular C(p) or C(e) matrix
provides a suitable characterization of innate hydraulic
property variability, or of the stochastic character of mea-
surement noise, respectively, both of which are required in
any method of uncertainty analysis.
[112] Valuable outcomes of an SSMC analysis following

regularized inversion of a highly parameterized model
include (1) a single set of calibrated parameters that contains
the variability that can be inferred from the calibration data
and can be used to make predictions that may approach
maximum likelihood and (2) many different parameter sets
that provide an acceptable fit to the calibration data, but
incorporate parameter variability on a finer scale than
considered during calibration, more closely approaching
the scale of true property variability.
[113] The example applications illustrate that the SSMC

approach is general in the sense that it is not limited to any
particular model or any particular parameterization scheme.
The second application demonstrates that the SSMC tech-
nique is applicable to real world model applications.
[114] The SSMC procedure is a logical extension to the

hybrid regularized inversion technique described by Tonkin
and Doherty [2005], and a companion to the predictive error
analysis technique described by Tonkin et al. [2007].
Indeed, as for these methods, the SSMC procedure is
founded upon the subdivision of parameter space into
orthogonal subspaces, restricting computations that impose
calibration constraints to a limited subspace of parameter
space, using a number of superparameters that is consider-
ably smaller than the number of parameters represented in
the model. With the SSMC technique, to the extent that
predictions of interest are sensitive to fine-scale parameter-
ization detail that is uninformed by the calibration data, that
detail is incorporated in the predictive analysis through
stochastic field generation. Once an ensemble of parameter
sets is obtained it can be employed to make any prediction
required of the model, and to calculate approximate confi-
dence intervals associated with predictions using frequency
analysis. Hence, the potential for error in model outputs can
be incorporated into decision making.

[115] Acknowledgments. The authors wish to thank the South Flor-
ida Water Management District (SFWMD), United States, and the Queens-
land Department of Natural Resources and Water (NR&W), Australia, for
support while developing these techniques. The approach described in this
study is documented and encapsulated in programs provided as part of the
PEST suite [Doherty, 2007], available at http://www.sspa.com/pest.
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